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The A* algorithm finds the path in a finite depth binary tree that optimizes a

function. Here, it is applied to maximum-likelihood soft-decision decoding of block

codes where the function optimized over the codewords is the likelihood function

of the received sequence given each codeword. Tile algorithm considers codewords

one bit at a time, making use of the most reliable received symbols first and pur-

suing only the partially" expanded codewords that might be maximally likely. A

version of the A* algorithm for maximum-likelihood decoding of block codes has

been implemented for block codes up to 64 bits in length. The efficiency of this

algorithm makes simulations of codes up to length 6,1 feasible. This article details

the implementation currently in use, compares the decoding complexity with that

of exhaustive search and Viterbi decoding algorithms, and presents performance

curves obtained with this implementation of the A* algorithm for several codes.

I. Introduction

The A* algorithm is an artificial intelligence algorithm

for finding the path in a graph that optimizes a fimction.

Nilsson [1, pp. 72-88] describes the algorithm as a heuris-

tic graph-search procedure and shows that the algorithm

terminates in an optimal path. The A* algorithm has been

used to implement full maximum-likelihood soft. decoding

of linear block codes by Han et al. [2-4].

The A* algorithm explores the codewords one bit at.

a time using the most reliable information first, pursuing

the most likely codewords first, and ruling out subopti-

mal codewords as soon as possible. The details of the A*

algorithm are covered in Section II. The implementation

discussed here has most of the features recommended in

[2] and has allowed code performance simulations for codes

up to length 64 ill reasonable amounts of time.

The codes considered here are binary linear codes. An

(N,K) code has 2 K codewords each of length N bits.

The binary symbols are transmitted over a communica-

tions channel and corrupted by channel noise. An additive

noise channel is one in which each received symbol can be

described as the sum of the signal and noise. The deep

space channel is accurately described as an additive white

Gaussian noise channel, meaning that the additive noise

for each symbol is an independent, random variable dis-

tributed according to a zero-mean Gaussian with variance
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_r2. Therefore, the received symbols, ri for i = 1 .... , N,

that form the received sequence r are continuously valued

and are called soft symbols.

Binary antipodal signaling transmits the bits as signals

of equal magnitude, but different signs. For this article,

the ith bit, bi E {0, 1}, of the binary codeword b is trans-
mitted as ci = (-t) b'. That is, a 0 is transmitted as +1,

and a 1 is transmitted as -1. Thus, the energy in a trans-
N _ N" bi 2

nfitted codeword e is given by _i=1 c_" = }-'_,i:t((-1) ) =

N independently of the codeword sent. The signal-to-noise

ratio (SNR) is Eb/,'Vo, where Eb = N/K is the energy" per

information bit, and N0/2 = a 2 is the white Gaussian

noise two-sided spectral density. Thus, the SNR is given

by

N )(dB)SNR = 10logi0

The hard-limited symbol hi is the transmitted signal
value +1 nearest to the received symbol ri; it is given by

ri

hi =sgn ri ) =

where hi equals 1 in the zero-probability case of ri = 0. If

the received symbols are individually hard-limited before

decoding, some information is lost from each symbol. For

instance, soft symbols like 0.01 and 1.01 both hard limit to

+1, yet the received value 1.01 is much more likely to have
been transmitted as +1 than is the received value 0.01.

The decoder performance is improved by approximately

2 dB [5, pp. 404 407] if, inslead of the hard-linfited sym-
bols, the soft symbols ri are used for what is then called

soft-decision decoding.

A. Maximum-Likelihood Decoding

One soft-decision decoding technique is called maxi-

mutn-likelihood soft-decision decoding. It decodes a re-
ceived sequence to the codeword c* that. maximizes the

likelihood of the received soft. symbols.

It is convenient to think of the codewords, which are

length N sequences of +l's, and the received sequence

r as points in N-dimensional space. Assuming an addi-
tive white Gaussian noise channel, the codeword e* that

maximizes the likelihood of the received sequence _' is the
one that minimizes the Euclidean distance between the
received word r and the codeword e.

The codeword that is closest to the received word can

be found by exhaustively checking all possible codewords,

or by cleverly seeking out the one that minimizes the

distance. The first technique is called exhaustive search

maximum-likelihood decoding. For an (N, K) code, there

are 2K codewords to check, making an exhaustive search

prohibitive for most interesting codes. Viterbi decoding

the block code on a trellis can give better decoding per-

formance with a fixed number of calculations. Techniques

such as the A* algorithm that use a heuristic search to find

the minimizing codeword can signifcantly reduce the cal-

culations needed for decoding, especially at a high SNR.

Nilsson [1] shows that the A* algorithm terminates with

the optimal path; Han [2] shows how to apply the tech-

nique to maximum-likelihood decoding; and this article

describes the algorithm as we have implemented it.

B. Linear Codes as Trees

Define C to be an (N, K) linear code with 2K length

N binary codewords b E C. The generator matrix G for
the code is a K x N matrix of 0's and l's that has as rows

linearly independent codewords. Given K information bits

in a row vector a:, the corresponding binary codeword b

is defined to be b = a_G. For a systematic code, the K
information bits are directly visible in the codewords. For

the systematic codes referred to here, the first K columns

of G form an identity matrix, and the codewords can be

divided into information bits, in the first I_ positions, and

parity bits, in the last. N - N positions.

1. Example. Consider the shortened (6,3) Hamming

code with the generator matrix

(10011y)0 1 0 1 0

0 0 1 0 1

The information sequences and the corresponding binary
codewords and transmitted codewords are listed in Ta-
ble 1.

To apply a heuristic tree search algorithm to the de-

coding of a block code, the code is thought of as a binary

tree with 2K depth N leaves where each path from the

root to a leaf corresponds to a codeword. Figure 1 shows

the representation of the (6,3) shortened Hamming code

as a tree with solid and dashed edges used to represent 0's

and l's, respectively, or equivalently, transmitted + 1's and

-l's. A node of level l in the tree is defined by the path
pl = PIP2,... ,Pl from the root to that node with binary

components Pi. For example, lhe path p2 = 10 specifies

the level 2 node designated by %" in Fig. 1.
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If the codewords of a systematic code live in a binary

tree, the tree is full through level K - 1, that is, every

node branches. This is because any length K sequence
of 0's and l's can be an information sequence. Since the

parity bits are determined by the information bits, every
level K node has only one descendant path that. continues

to level N.

II. Algorithm Description

The A* algorithm for soft decoding block codes searches

a binary tree for the length N path that minimizes a func-

tion. On any given iteration, it uses a heuristic to ex-

pand the node that is likely to yield the optimal path and

eliminate any nodes that can only have subop6mal de-
scendants. The method by which nodes are selected for

expansion or eliminated from consideration uses an under-
estimate of the function t.o be minimized, called a heuris-

tic function. The heuristic function at a node must lower

bound the function to be minimized for all paths that pass

through that node.

For maximum-likelihood soft-decision decoding, the

function that is minimized over all codewords is the Eu-

clidean distance between a codeword and the received

word. It is equivalent to minimizing the square of the
Euclidean distance:

N

8(r, C) _ _--_(ri -- Ci) 2

i=1

For the algorithm to find the minimizing codeword, the
heuristic function at a node must be less than or equal to

the actual squared distance of any full-length path that

passes through that node (or equivalently any codeword
that is prefixed by pl the path that defines the node).

The minimum distance over all codewords that begin

with the path p_ is lower bounded by the mininmm dis-

tance over all length N binary sequences that begin with

the path p_. This can be made explicit for distance squared

by

rain s(r, e) _<
{bE{O,1}Nlbi=p,, i=1,2 ..... l}

rain s(r, c)
{bEClb,=p,, i=1,2,._ ,I}

where ci = (-1) b'. The minimum distance over all length

N sequences that begin with the path pl is achieved by

the sequence that begins with pl and continues with binary

symbols consistent with the hard-limited received symbols.
The heuristic function is the squared distance from the

received sequence to either the codeword defined by the

path pK if the node is at level I = K, or the sequence

that begins with the path pl and is completed by symbols
consistent with the hard-limited symbols, if I < K.

A. Fundamentals of the Algorithm

The A* algorithm keeps an ordered list of possible

nodes to operate on. Associated with each node is the

path pt that identifies the node, the value of the heuristic

function, and an indicator of whether the node represents a

single codeword. The value of the heuristic function deter-
mines the order of the list of nodes and, therefore, guides

the search through the tree.

When the A* algorithm begins the search, the root of
the tree is the only node on the list. The algorithm ex-

pands a node if it might yield a codeword with the min-
imum distance from the soft received symbols, and elim-

inates front the list nodes that are too far from the re-

ceived symbols to have the maximum-likelihood codeword

as a descendant. The algorithm terminates when the node

at the top of the list represents a single codeword. That
codeword is the maximum-likelihood codeword.

At each iteration, the node on the top of the list, which
has the smallest value of the heuristic function, is ex-

panded. It is taken off the list, and the two possible ways
of continuing the path are considered as nodes to put back

on the list. Each new node is placed back on the list pro-

vided that its heuristic function is not greater than the

actual squared distance for a completed codeword. If the

node expanded is at level K - 1, the two level N children

specify codewords, and the heuristic function for each child

node is the actual squared distance between the codeword
and the received word. These codewords are called candi-

date codewords. When a node that defines a codeword is

placed back on the list, all nodes below it on the list are
deleted.

B. Features That Improve the Efficiency

The features described in this section are not necessary

to guarantee maximum-likelihood soft-decision decoding,
but they' improve the efficiency. Sorting the bit positions

to take advantage of reliable symbols reduces the number

of nodes expanded. Using a simplification of the heuristic
function reduces the number of computations during each

node expansion. These features have been implemented
and make the A* decoder a practical tool for decoding.
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1. Sorting by Reliability. If the bit positions cor-

responding to the more reliable received symbols are ex-

panded first, then the search will be directed more quickly

to close candidate codewords. The nearer a symbol is to O,

the less reliable it is because it is almost equally far from

both +1 and -1. Similarly, the greater the magnitude of

the received symbol, the more reliable that symbol is. To

take advantage of the reliable symbols, the received sym-

bols are reordered in descending order of magnitude, and

the code symbols are reordered equivalently. Since the A*

algorithm defines the code by the Ix" x N generator matrix

G, reordering the code symbols is equivalent to reordering

the columns of the generator matrix.

This implementation of the A* algorithm sorts the re-

ceived symbols by reliability, reorders the columns of the

generator matrix in the same way, and then tries to row

reduce the generator matrix so that it is systematic. How-

ever, if it encounters a column, among the first K colunms,
that is linearly dependent on previous columns, it moves

the offending column and corresponding received symbol
to the end, and continues the row reduction.

Typically, tile number of nodes expanded while decod-

ing a received word is significantly reduced by sorting the

symbols before starting the decoding process. The increase

in efficiency from sorting first was found, for the shorter

codes like the Golay (24,12) code, to outweigh the cost

of sorting and row reducing the generator matrix. For

the larger codes, like the quadratic residue (QR) (48,24)

code, decoding without sorting was so much more time-

consuming that it was not a reasonable option to run com-
parison tests. Sorting was adopted as a standard feature.

2. Alternative Function to Minimize. Every soft
symbol ri is at least as far away from the codeword symbol

ci as it is from the hard-limited symbol hi. The squared

distance, s(r,c), can be written as the sum of the square of

the distance to the hard-limited symbols, s(r,h), and an

amount a(r,c) that is nonzero only when there is at least

one symbol ci that does not equal the hard-limited symbol
h/, as follows:

N

s(r, C) ---- E(ri -- Ci) 2

i=1

N

= E(ri -- hi +hi-ci) 2

i=1

N N

E (ri-hi) 2+ E (ri-hi+2hi) 2
i----1 i=1

ht-_ct h,_c,

N

= h,)2
i=1

hi'el

N

i=1

h,#c,

N N

=Z (ri-hi)2+4 E hiri
i=1 i:1

h,#c.

(la)

N N

: h,)2+ 4 I,',1
i=1 i=1

h,#c,

(lb)

: s(r,h) + 4a(r,c) (lc)

where Eq. (la) follows by recombining the summations

of like terms, Eq. (lb) uses hiri = sgn (r,)ri -- Iril, and

Eq. (lc) introduces an alternative function,

N

.(r,c)= E
i=I

sgn (r,)¢c,

Since the first term in Eq. (lc) does not depend on the
codeword c, it is constant over the minimization, and

rain s(r, c) = s(r, h) + 4 min a(r, c)
C C

Maximum-likelihood decoding of the received sequence can
be done by finding the codeword that minimizes either

s(r,c) or a(r,c).

Because each term of a(r,c) is either zero or Iril, based

on a comparison, it is simpler to calculate than s(r,c),
which for each i requires a difference and a square. The

alternative function a(r,c) is used by this implementation
of the A* algorithm.

3. Example Revisited. Consider the shortened (6,3)

Hamming code and the received sequence r = (0.05, -1.3,
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1.1, 0.8, -0.25, 0.6). Reordering tile received vector by,

magnitude gives r' = (-1.a, 1.1, 0.8, 0.6, -0.25, 0.05).
Tile reordered generator matrix in systematic form is

i 0 0 l 1 l)
[ 0 1 1 0

0 1 0 1 1

and a binary codeword b in the original code corresponds

to a sorted eodeword 5. Figure 2 shows the tree explored

by the A* algorithm when the sorted code is used. Each
node is labeled with the value at that node of.the heuristic

flmction using the alternative function. Tile 3 expanded

nodes are each designated by a %'; the 2 candidate code-

words are each designated by a "A"; and tile 12 edges ex-

plored are the edges of tile tree that are shown. The nodes
with paths 0, 11, and 101 are dropped from the list when
the candidate word, with alternative function 0.65, is put,

on the list. Tile search promptly t.erminates because the

top node on tile list. defines a candidate codeword, namely

b' = 100111. Unshuffling b' gives the maximun>likelihood
decoded codeword to be b = 110011. For comparison,

Fig. 3 shows the larger tree explored by the algorithm when

the symbols are not sorted.

C. Verification of the Decoder

The decoding results of the A* algorithm were com-

pared to the results of two exhaustive search decoder im-

plementations. The (24,12) Golay code was used for this
test since it has only 212 = 4006 codewords, making it fea-

sible to get timely results from an exhaustive search de-
coder. First, the software decoded the received sequences

using both A* and exhaustive search, and compared the
results internally. Second, a couple hundred received se-

quences were decoded by both the A* software and an
independent exhaustive search decoder written in APL.
The results showed that both exhaustive search and A*

decoders decoded the same noisy vectors t.o the same code-

words.

The software to implement the A* algorithm has been
written in C and run on several Sun platforms. Since in-

tegers on these processors are a2 bit.s long, the software

to implement the A* algorithm has been constrained to
linear codes with 64 or fewer bits per codeword by' using

two 32-bit iutegers for each codeword. Because of this

implementation detail, it. was important to confirm that
the A* software properly' decodes codes longer than length

32. Most interesting codes with lengths over a2 bits take

a prohibitively long time to decode exhaustively. A test
code with length N greater than 32 and one with more

than 32 information bits were devised so they could be

readily decoded by other means. The code with length

greater than 32 was created by repeating the parity bits of

tile Golay (24,12) code. This formed a (36,12) code that
was no more difficult to exhaustively decode than was the

Golly (24,12) code. After debugging and testing, the de-
coder decoded 500 codewords consistent with the exhaus-

tive decoder results. Next, a simple (34,33) code, consist-

ing of 33 informatiou bits and 1 overall parity bit,, was
tested on 200 noisy received words. This code was se-

lected because a maximum-likelihood decoder is easy to

write, and an APL program was used to veri_' that the
200 test, words decoded consistently.

D. Operational Details

To analyze the performance of either the algorithm or

a code, data are taken by running the software with differ-

ent input paranieters. For a giwm run, tile software takes

as input the generator matrix for the code, the SNR, the
seed for tile random number generator, and the number of

words to decode. It. returns the aw, rage number of nodes

expanded, the average number of candidate codewords,
and the number of word errors that occurred. Somet.imes

a system call from inside the program was used to provide
the amount of cenl.ral processing unit (CPU) time con-

sumed during a run. These decoding runs rauged in size
from hnndreds t.o tens of thousands of decoded received

sequences. The codes that have been examined include
a Bose (?haudhuri-Ilocquenghem (FICtt) (63,56) code, a

quadratic residue (48,24) code, a (;oily (24,12) code, a
BCH (31,10) code, and a Reed Muller (32,16) code. The

data from multiple runs are combined careflllly to give the

results in the following sections.

III. Algorithm Performance

The intricacy of the A* algorit.hnl makes it difficult t.o
describe the number of calculations necessary t.o decode

a receiw_d sequence, l_ossit)le measures of the number of
calculations describe the search size for the A* algorithm
and include the number of candidate codewords, the nun>

bet of expanded nodes, and the number of edges searched
in the tree. The number of edges K in the search tree is

given by

E = 2X + (N -/_)(:

where X is the number of nodes expanded including the

root and (7 is the number of candidate codewords. Be-

cause the search size for l.he A* algorithm varies from one
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received sequence to the next, the averages of these num-

bers over many received sequences are used for compari-

son. Section III.A explains simulation timing results that
show that the search size and the time to decode are re-

[at.ed linearly. Section III.B shows how the average size

of the A* search tree depends on tile signal-to-noise ra-
tio. Section III.C introduces other maximum-likelihood

decoders that are used for comparisons in Section III.D.

A. Time to Decode Versus Search Size

The average amount of time it takes to decode received

sequences retlects both the computational overhead for

each sequence decoded and the computations for each part

of the search tree. Analyzing the time to decode requires

that all of the timing data be taken on the same computer
and that the accuracy of the timing data be sufficient to

perform comparisons. Tile system call used to generate
the timing information for a run was accurate to within

a second, which is too coarse to study data on individual

decoded sequences, but sufficient for data on ensembles of

decoded sequences.

The relationship between the indicators of search size

introduced earlier and decoding time may be observed in

the data from many runs for the quadratic residue (48,24)

code ou a Spare 10 Model 30 workstation. Tile average
decoding times versus the average numbers of candidate

codewords and expanded nodes are shown in Fig. 4, along

with a weighted linear fit I to the data. Although the data

display a small amount of statistical variability, the time

to decode displays a nearly linear relationship to the indi-
cators o1"search size.

The relatiotlshil) hetween the average numbers of ex-

panded nodes and candidate codewords for the (48,24)
code in l"ig. 5 is well described as linear.

B. Search Size Versus SNR

The average size of the tree that the A* algorithm
searches is a function of the SNR for the received se-

quonces. For each of the codes studied, the average nun>
bers of candidate codewords, expanded nodes, and search

tree edges are shown versus SNR in Figs. 6, 7, and 8,

resl>ectiw'ly. The total numt>er of sequences decoded for
each point in these figures is shown in Table 2.

Not surl>rismgly , for extremely high SNR, the A* algo-

rithm typically finds only two candidate words, along the

1 rl,he nunlber of dectMed words in each run was included in the line
fitting process t_) account for the variati,m in accuracy bctwee.n
<{ala fro]n large &lid small l'l.lllS.

way expands K nodes, and therefore has a search tree with

.E = 2K + 2(N - K) = 2N edges.

For low SNR, the soft symbols are predoininantly noise,
but the A* algorithm still expands a mere fraction of the

nodes in the tree, especially as it bases early decisions on

the symbols that contribute most to the final choice. Fig-

ures 6 and 7 show that simulation data of the average
numbers of candidate words and expanded nodes are al-
most constant for SNRs below -4 dB. Since the number

of edges is calculated from the number of nodes and can-

didate words, the average number of edges also levels off
for low SNRs, as seen in Fig. 8.

The algorithm was also tested for each code with no
signal at all, i.e., an SNR of -,30. Table 3 shows that for

each code the average number of expanded nodes and the

average number of candidate words during A* decoding
were comparable to the numbers for SNRs below -4 dB.

It also shows the number of words decoded to obtain these

averages.

C. Other Maximum-Likelihood Decoders

Many other maximum-likelihood soft-decision decoding
algorithms use a fixed number of calculations to decode

any received sequence, independent of the SNR.

1. Exhaustive Search and Full Tree Search. An

exhaustive search decoder calculates the distance between

the received sequence and each codeword in the code in-

dividually, and returns the codeword with the minimum

distance. For an (N, Ix') block (:ode, an exhaustive search
technique computes the distances from the received se-

quence to all 2K codewords. If exhaustive search is cast

in terms of a graph with one edge for each bit in each

codeword, the number of edges for an exhaustive search is
N21";, independent of the SNR.

A slightly more efficient technique to compute the dis-
tances to all the codewords is to use the full code tree.

Here the squared distance from the received sequence to a

codeword, at a leaf, is the sum along the path to that leaf

of the squared distances from each received symbol to the

symbol associated with each edge. For an (N, K) code, the
number of edges in the fidl tree is 2K+I - 2 + (N- K)2 K.

This technique checks all 2K leaves but has fewer edges
than an exhaustive search.

2. Viterbi Decoding of Block Codes. To apply
soft-decision Viterbi <tecoding to a block code, the code is

represented as a trellis. Wolf [6] and Massey [7] introduce

a minimal code trellis for block codes. McEliece [8] shows
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a simple technique for constructing the minimal trellis for

a given code, and also shows that it is optimal for Viterbi

decoding complexity. A Viterbi decoder for a code on a
trellis uses a constant number of calculations and com-

parisons independent of signal-to-noise ratio. The Viterbi

decoding complexity for a given trellis for a given code can

be measured by the number of edges in the trellis.

Less is known about the best trellises for the quadratic

residue (48,24) code. A worst-case permutation produces

a minimal trellis with 226-4 = 67,108,860 edges. A better

permutation results in a minimal trellis with 925,692 edges.

The A* algorithm search tree has on average 34,429 edges

when no signal is present.

An (N, K) code has a minimal trellis that can be con-

structed from the generator matrix. Different permuta-

tions of a code may have different minimal trellises. There

are codes, such as cyclic codes, for which the minimal trel-

lis has the most edges compared with the minimal trellises
for other permutations of the code. The permutation that

gives the most edges in the minimal trellis is the worst
permutation of the code. The number of edges in the min-

imal trellis for the worst permutations is no more than

2M+2-4+2M(N- 2M) where M = rain (K,N- K + 1).

Other permutations give smaller minimal trellises.

D. Comparisons

The search size for the A* algorithm depends on the

received sequence, and the average search size depends

on the SNR. The averages found with no signal present

are used for comparison with the maximum-likelihood de-
coders that use a fixed number of calculations.

Table 4 shows the number of edges used for an exhaus-
tive search for each code and for the full code tree, both of

which are greater than the average number of edges in the

A* search tree shown for the case of no signal in Table 3.

The average number of edges in the search tree for the

A* algorithm is presented for comparison to the number

of edges in the trellis for Viterbi decoders. Table 4 also

shows the number of edges in some special trellises for the
codes where the numbers are known or bounds have been

calculated.

IV. Future Enhancements

There are several elements affecting the etticiency of the

software, including the initial computations to set up the

search, the size of the search, and the number of compu-

tations for each part of the search. With greater under-

standing of the algorithm come more ideas for improving
the software to reduce at least one of these elements. Ei-

ther using the minimum distance of the code to determine

if the search can be successfully terminated before the list

is exhausted or improving the heuristic function will re-

duce the search size. Ideas like reducing the complexity

of sorting the received symbols for each decoding will trim

the number of initial setup computations, but will increase

the search size by an undetermined amount.

A. Escaping When a Candidate Is Definitely Closest

If the angle hetween the received word and a candi-

date codeword, as viewed from the origin, is less than half

the mininmm angle between any two codewords, then that
candidate codeword is the closest one to the received word.

One of the suggestions in [2] is to calculate the angle be-
tween the received word and each candidate codeword as

it is found. If this angle indicates that the candidate is

the closest codeword, then declare that the decoding is

complete, and exit the algorithm.

This feature has not been implemented at this writing,
but is expected to reduce the size of the tree searched.

Consider the Golay (24,12) code. An exhaustive search

explores (24)212 = 98,304 edges. The full tree has 2 la

- 2 + (12)212 = 57,342 edges. The number of edges in
the minimal trellis for the worst-case permutation of the

Golay (24, 12) code is 214 - 4 = 16,380. The number of

edges in the minimal trellis for the best permutation of

the Golay code is 3580 [8]. By using enhancements on
a certain trellis for the Golay code, Forney [9, p. 1183]

reduces the number of binary operations of a decoder to

1351. This decoder is mentioned as interesting, but the

number of binary operations is not directly comparable to

edge counts for the A* algorithm. Note that at low SNRs
the A* algorithm on average expands 62 nodes, checks 29

candidate codewords, and has a search tree with 4B9 edges.

B. Improving the Heuristic Function

Each parity bit is a linear function of a subset of the

information bits. If a node in the tree is deep enough to

specify all the information bits for a particular parity bit,

then any codeword passing through that node will have the

same value for that parity bit. The heuristic function could

use this parity bit to improve the distance underestimate

for all nodes at that depth, and thus reduce the size of the

tree searched by the algorithm.

C. Sorting Fewer Symbols

To simplify the sorting of symbols by reliability and the

necessary row reductions to the generator matrix, it may
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be beneficial to sort only the information symbols or to

sort. only a few of the most reliable symbols.

Sorting only the infornmtion symbols ill tile received

word greatly simplifies the production of a systematic

generator matrix for the reordered code bits. Since the
columns corresponding to information bits are columns of

an identity matrix, they are linearly independent, and ex-

changing rows is all it. takes to return the generator matrix
to systematic form. Thus, the row reduction portion of the

algorithm is simplified.

Another possibility for simplifying sorting is to reorder

only the t_ most reliable linearly independent symbols and

not to reorder the rest. In such a design, there are no more

than N!/(N - n)! reorderings of the columns, and, hence,

this many systematic generator matrices. For small values

of i, such as 1 or 2, it may be acceptable to store and

retrieve systematic generator matrices for each of these

reorderings.

V, Code Performance

The A* algorithm that we have implemented has been
very usefld for simulating code performance. Figure 9

shows the probability of word error versus SNR for the

BCH (63,56), Reed Muller (a2,16), BCH (31,10), Golay

(24,12), and quadratic residue (48,24) codes. The error
bars are one standard deviation of an average of m inde-

pendent Bernoulli trials. Specifically, the estimated stan-

dard deviation is cr = k/p(1 -p)/m, where p is the esti-
mate of the probability of word error at a given SNR, and

m is the number of decodings done at that SNR.

VI. Conclusions

The application of the A* algorithm to maximum-

likelihood soft-decision decoding allows for efficient sim-

ulation of code performance. The A* algorithm finds the
codeword that maximizes the likelihood of the received

word given the codeword. This is equivalent to minimizing
either the Euclidean distance between the received word

and a codeword or the alternative function described in

Section II.B.2. The use of a heuristic flmction constrains

the search to only a subtree of the code's finite binary tree.

The heuristic flmction underestimates the function being
minimized in order to ensure that the subtree contains the

optimal path.

The size of the tree searched by the A* algorithm, as

described by the numbers of nodes expanded, candidate

words, and edges, is a good indicator of the complexity for

decoding that received sequence. Since the search size de-

pends on the received sequence, the average search size as

a function of signal-to-noise ratio is used for comparison.
The search tree is smallest for a high SNR, where the algo-

rithm goes straight to the maximum-likelihood codeword,

and larger at a low SNR, where tile searched portion of the
tree is still much smaller than the full code tree. At a low

SNR, the average size of the A* search tree is also smaller

than the fixed trellis size of a good Viterbi decoder.

For research applications, simulations using this imple-

mentation can provide data on code performance, such

as word error rate, for comparisons to theoretical results,

such as bounds, and for testing other predictors of code

performance.
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Table 1. Information sequences and the corresponding binary and

transmitted codewords for the (6,3) shortened Hamming code.

Information Binary _I'ransmit t ed

sequence ar codeword b codeword c

000 000000 1 1 1 1 1 1

001 001011 1 1-1 1 -1 -1

010 010 l 01 1 --1 1 --1 1 -I

011 011110 1 -1 --1 -1 -1 1

1 O0 1 O0110 -1 1 1 -1 -1 1

101 101101 -1 I -1 -1 1 -1

110 110011 -1 --1 1 1 -1 -1

111 111000 -1 --1 --1 1 1 1
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SNR, dB

Table 2. The number of codewords decoded and used to generate

Figs. 6 through 9.

BCIt QR Golay Reed-Muller BCH

(31,101 (48,24) (24,121 (32,16) (63,56)

-- 7 40,000 6200 6400 6400 61 O0

-- 6 40,000 6200 6400 6400 6100

-- 5 40,000 6200 6400 6400 5900

--4 40,000 6200 6400 6400 5900

-3 40,000 6200 6400 6400 5900

-- 2 642,100 47,400 58,900 6400 33,300

- 1 923,200 70,600 71,700 19,200 57,200

0 1,204,000 83,500 84,500 32,000 83,700

1 1,483,000 207,900 385,000 279,300 279,600

2 3,362,100 409,800 465,000 359,100 468,900

3 5,014,000 1,042,500 1,102,500 995,000 1,036,000

4 6,212,500 1,571,000 2,113,000 1,200,000 1,256,000

5 7,418,000 2,472,500 6,055,000 1,400,000 1,476,000

6 21,242,000 8,048,000 16,330,000 7,200,000 6,512,000

7 12,400,000 8,337,000 8,400,000 8,400,000 7,5,17,0(/0

Table 3. The number of codewords decoded at an SNR of negative infinity, and the average

numbers of expanded nodes, candidate codewords, and edges in the search tree for the A*

algorithm.

A* results at SNR of negative infinity
BCH QR Golay Reed-Muller BC[t

(31,10) (48,24) (24,12) (32,16) (63,56)

Number of decoded words 89,400 29,900 90,000 59,600 35,600

Average number of expanded nodes 181.16 2705.54 62.45 244.66 79.59

Average number of candidate codewords 120.96 1209.07 28.65 113.34 12.28

Average number of edges in search tree 2902.56 34,428.71 468.68 2302.77 245.12

138



Table4.Indicatorsofdecodingcomplexityforsomemaximum-likelihooddecodingtechniques
thatuseafixedsearchsizeornumberofcalculationsfordecoding.

Other decoder sizes for comparison to A*
BCH QR Golay Reed-Muller

(31,10) (48,24) (24,12) (32,16)

BCH

(63,56)

Number of edges in a minimal trellis for the

worst permutation of the code 15,356

Number of edges in a minimal trellis for a better

permutation of the code

N,maber of edges in a minimal trellis for the best

permutation of the code

Number of binary operations in a trellis with

enhancements for the Golay (24,12) code [9, p. 1183]

Number of edges in a full code tree 23,550

Number of edges in an exhaustive search 31,744

67,108,860 16,380

925,692

>860,156 3580

1351

436,207,614 57,342

805,306,368 98,304

262,140

1,179,646

2,097,152

13,052

6.5 x 1017

4.5 × 1018

_ 00000o

.......... _. : ........ •- ....... • 001011

""'*-.. " ...... : : ........ • 010101

011110

.......°........: -,oo,,o
",. J ..... "0" ....... ¢ _ ........ • 101101

e¢,

"'+--+..+._ ....... • ....... 4 110011
111000

W W W UJ

Fig. 1. A binary tree representation of the (6,3) shortened

Hamming code.
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jl.3 0_5 b' &

°°eet

•, _- ...... -t- ....... • ....... -0(100111) -_ 110011

"'' _r ....... ; " ; (101100)-_ 010101

0 °"'*.

°"-0 1.1

Fig. 2. The tree explored by the A* algorithm when the bit

positions are sorted to take advantage of the more reliable

symbols first. Expanded nodes are designated by o, and nodes

defining candidate codewords are designated by t_.

0_1.3

......... "...... ; ; ....... -0010101

/ 0 ...... °_. ....... .0 ........ ; ;011110

¢E, 2.5
%%

°_,_ ; ; ; 11 1000O.05

1.4

Fig. 3. The tree explored by the A* algorithm when the bit

positions are not sorted. Expanded nodes are designated by o,

and nodes defining candidate codewords are designated by A.
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word, for the quadratic residue (48,24) code on a Sparc 10 Model 30 workstation.
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Golay (24,12), and quadratic residue (48,24) codes. The error bars are _+0, one standard deviation.
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